Mostrando entradas con la etiqueta Geología. Mostrar todas las entradas
Mostrando entradas con la etiqueta Geología. Mostrar todas las entradas

miércoles, 19 de diciembre de 2018

Regreso a Pangea

La Tierra vista desde la Estación Espacial Internacional. NASA






















Los modelos predicen que todos los continentes volverán a reunirse en 200 millones de años. Los efectos en la evolución serán formidables.

La fragmentación de Pangea ha sido un vector esencial de la evolución de los animales, y su reunificación en el futuro lejano lo será igualmente. Con los datos paleontológicos en la mano, es sumamente improbable que los humanos sigamos aquí dentro de 200 millones de años –las especies marinas más longevas nunca han pasado de los cinco millones de años—, pero es muy posible que la vida terráquea aguante incluso nuestras agresiones más disparatadas y siga medrando. E incluso que una especie más inteligente que la nuestra haya heredado el mundo. Lee en Materia cómo será la Tierra cuando se forme el siguiente supercontinente, que probablemente se llamará Novopangea, si es que todavía hay alguien ahí que pueda ponerle un nombre. Incluso si no es así, los efectos de la geología sobre la evolución serán enormes, como ya lo han sido en el pasado.


Hace 300 millones de años, todos los continentes estaban unidos en una sola masa de tierra firme llamada Pangea. Cincuenta millones de años después, Pangea empezó a fragmentarse, y el éxodo de sus pedazos a lo largo y ancho del planeta condicionó por completo la evolución biológica de los eones ulteriores. Australia fue de los primeros pedazos en separarse de Pangea, y eso explica su biología excepcional: emús, wombats, canguros, cucaburras, koalas y ornitorrincos. Muchos de ellos son marsupiales, un grupo biológico anterior a los mamíferos, pero han desarrollado unas formas y funciones que a primera vista se pueden confundir con las de los mamíferos de otros continentes. Es uno de los casos más chocantes de convergencia evolutiva, donde dos linajes separados alcanzan unas soluciones similares para adaptarse a su función, a su clima y a su posición en ese gran esquema de las cosas que llamamos ecología.

El mamífero vivo más similar al elefante es, curiosamente, el damán africano, que no es mucho mayor que un hámster. Los grandes animales no se agrupan en una rama evolutiva que los predispone a ser grandes. Su evolución, más bien, ha estado condicionada por el fragmento continental en el que estaban viajando por el planeta sin saberlo. Los primeros mamíferos se dividieron en los tres grandes grupos actuales (afroterios como el elefante, boreoterios como los humanos y desdentados como el oso hormiguero) por la sencilla razón de que, hace 100 millones de años, África, Suramérica y Eurasia se separaron de un continente único.

El mismísimo origen de los animales, que ya era en tiempos de Darwin el problema central de la biología evolutiva, y que ahora lo sigue siendo con todavía más fundamento, coincide en el tiempo con otro fenómeno fundamental de la geología continental. Hace 600 millones de años, toda la tierra firme estaba unificada en un supercontinente mucho más antiguo que Pangea. Los geólogos lo llaman Pannotia, y estaba apiñado en las proximidades del polo sur. La fragmentación de Pannotia empezó hace 540 millones de años, en enigmática coincidencia con la explosión cámbrica que originó todos los planes de diseño animal (artrópodos como la gamba, moluscos como el mejillón, cordados como el lector) que persistimos en la actualidad.

Es improbable que los humanos sigamos aquí cuando toda la tierra firme vuelva a ensamblarse en el supercontinente de Novopangea, y mucho menos para ver los efectos de su fragmentación posterior. Ojalá algún geólogo de una especie futura, o al menos un paleontólogo extraterrestre, pueda presenciarlo y aprender algo importante de ello. El tiempo dirá.

Fuente: ElPais.com

domingo, 28 de octubre de 2018

"Un planeta dentro de otro planeta": el estudio que confirma que el núcleo interno de la Tierra es "sólido y blando"

Regresa a tus épocas de colegio y trata de recordar lo que te enseñaron sobre las capas que conforman el planeta Tierra.
Si no recuerdas nada no te preocupes, pues un nuevo hallazgo sugiere que debemos replantear lo que hasta ahora sabíamos del núcleo interno del planeta.

Un equipo de científicos de la Universidad Nacional de Australia afirma que obtuvieron las pruebas para confirmar que el centro de la Tierra es sólido, algo que hasta ahora era solo una sospecha.

¿Qué hay en el centro de la Tierra?
Descubrieron, además, que es sólido y más blando de lo que se pensaba.

"Esto significa que se puede deformar más fácilmente y tiene varias implicaciones para entender sus composición mineral y el interior profundo de la Tierra", le dice a BBC Mundo el ingeniero físico Hrvoje Tkalčić, coautor de la investigación.
Entre las implicaciones que menciona Tkalčić están la comprensión de fenómenos como la rotación del núcleo central respecto al manto de la Tierra, los cambios en la duración de los días y el campo geomagnético que influye directamente sobre la vida en la superficie de la Tierra.

El misterioso río de hierro líquido que se esconde en el centro de la Tierra y que acaba de ser descubierto
"El núcleo central de la Tierra es una profunda cápsula del tiempo, desde la cual podemos entender el pasado, el presente y el futuro del planeta", dice Tkalčić.

¿Cómo lo lograron?
Tkalčić describe el núcleo central como "un planeta dentro de un planeta".

"Es una esfera caliente con una masa de cien quintillones (1 seguido de 30 ceros) de toneladas de hierro y níquel que yace a 5.150 kilómetros debajo de nuestros pies, a la espera de ser descubierta".
Por ahora llegar a esas profundidades resulta imposible, así que la manera de aprender del núcleo interno es a través de las ondas sísmicas.


¿Cómo sabemos qué hay en el centro de la Tierra?
La clave estuvo en analizar las llamadas "ondas J", un tipo de onda que solo puede viajar a través de objetos sólidos.

Hasta ahora, la rigidez del núcleo central no estaba bien determinada porque no había una observación directa de las ondas que lo atraviesan.

"Con este estudio lo logramos", explica Tkalčić. "Detectamos la presencias de ondas J, medimos su velocidad en el núcleo central y con base en ello, obtuvimos una medida de su rigidez".

Cómo sería el mundo si la Tierra fuera realmente plana, según la ciencia
De acuerdo con la revista Science, donde fue publicado el estudio, este hallazgo "concluye 80 años de búsqueda de la prueba de la solidez del núcleo central".

Las ondas J del interior de la Tierra son tan pequeñas y débiles que siempre ha sido el "Santo Grial" que los sismólogos han querido hallar.

En este caso, en vez de buscar la llegada directa de ondas J, Tkalčić y su colega Thanh-Son Phạm se enfocaron en hallar las similitudes entre varios de sismogramas ubicados en distintas partes del mundo.

El misterioso tercer elemento del núcleo de la Tierra que los científicos creen haber identificado
Esto les permitió construir una "huella digital" de las ondas sísmicas de la Tierra, a partir de la cual pudieron detectar las ondas J y medir su velocidad con una certeza sin precedentes.

¿Qué sigue?
El hallazgo, aunque resulta prometedor, hace que surjan nuevas preguntas.

"Aún nos queda saber cuál es la causa física de que el núcleo central sea menos rígido de lo que esperábamos", dice Tkalčić.

Qué es el "agujero magnético" que abarca gran parte de Sudamérica y donde el escudo de la Tierra se está debilitando de forma "alarmante"
"Aún estamos en una etapa de descubrimiento sobre su composición química, qué otros elementos además del hierro y el níquel la componen, de qué tamaño son los granos, qué tan rápido se solidifican, qué tan viejos son…".

En todo caso Tkalčić es optimista.


"La comprensión de otros planetas se basa en la comprensión de nuestro propio planeta, y un día, cuando la humanidad se embarque en ese viaje espacial en busca de nuevos mundos, ese viaje será posible gracias a este conocimiento".

Fuente: BBC.com

viernes, 6 de abril de 2018

Una grieta kilométrica recuerda que África se está dividiendo en dos

La tierra se abrió hace unos días en el suroeste de Kenia (África). A lo largo de varios kilómetros, atravesando campos, agrietando carreteras y agujereando la reserva Masai Mara, la abertura ha alarmado a los lugareños y ha provocado cierto revuelo en algunos medios. Hay quienes dicen que el continente africano se está partiendo en dos. Es cierto, pero aún quedan unos cuantos millones de años para que eso ocurra.


La raja en la tierra es un recordatorio de que la Tierra es un planeta en movimiento. La superficie terrestre está agrietada como un viejo cuadro en varias placas tectónicas que, en su roce, desatan fenómenos como terremotos o erupciones volcánicas, levantan montañas y abren valles. Ese mismo movimiento hace que cada placa sea también inestable. En el caso de la región oriental de la placa africana, el encontronazo constante con las placas arábiga e india, que empujan desde el norte, está desgajando la porción este del continente africano. Su manifestación más visible es el Gran Valle del Rift, una amplia franja de terreno que va desde Mozambique, al sur, hasta el cuerno de África y más allá.
"Por debajo hay una falla en el terreno que está separando África en dos", dice el catedrático del departamento de geodinámica de la Universidad de Granada, Juan Ignacio Soto. Pero el tiempo de la separación es geológico, llevará millones de años. "Sabemos que pasará, pero no cuándo", añade. En cierta medida es el proceso inverso al que produce cordilleras como el Himalaya o los Andes. Mientras estas se elevan por el choque de dos placas que convergen, en este valle se están separando.

Estos procesos geológicos son lentos para la cronología humana. "A veces se separan unos milímetros y otras muchas la fractura se produce en el interior sin que la veamos", explica el catedrático. En otras, como esta vez, la raja es superficial y de metros de ancho. "Lo llamativo es la longitud de esta", añade. Aunque habría que confirmarlo, se apunta a que las lluvias habrían ensanchado la magnitud de la brecha.
No será la última vez que suceda. Bajo la tierra hay un proceso de división de la placa africana en dos nuevas, la nubia al oeste y la etíope al este. Es ese mismo proceso el que está detrás de algunas de las maravillas de esta parte de África. El Gran Valle del Rift está formado en realidad bajo varias fracturas de la corteza terrestre. Por encima se corresponden con el Rift Albertino el Rift de África Oriental.

El conjunto de valles sobre las fallas tiene una extensión de unos 5.000 kilómetros. A lo largo de las fracturas se encuentran los principales volcanes africanos. Los grandes lagos, desde el Victoria al Tanganica, pasando por el Turkana o el Natrón, se deben a la presencia de estas fallas. Y gracias a ellas también esta zona es la región con la mayor porción de biodiversidad que queda en el planeta. En algún momento, quizá dentro de 50 millones de años, habrá dos áfricas, pero aún no.


Fuente: ElPais.com

lunes, 25 de septiembre de 2017

¿Por qué México es víctima de los terremotos?

La geodinámica de la zona y la ubicación de la capital mexicana explican la repetición e intensidad de los sismos.

Los fatalistas dirían que México, y Ciudad de México en particular, están en mal sitio. Desde un punto de vista geológico casi hay que darles la razón. Casi todo el territorio mexicano se encuentra en el borde de una de las placas de la corteza terrestre bajo las que se está desplazando otra, lo que provoca la alta sismicidad de la región. La intensidad con la que los terremotos, él último producido ayer, castigan la capital mexicana se debe más a factores locales.

¿Por qué se producen tantos terremotos en México?


Desde el devastador terremoto de 1985, en el que murieron al menos 10.000 personas, México ha sufrido una decena de sismos de una magnitud igual a superior a la del sucedido este martes. Salvo uno desatado en Baja California (en el noreste del país) en 2010, todos se han producido en la franja suroeste y central, en estados como Michoacán, Guerrero u Oaxaca. La razón de tal concentración hay que buscarla en el movimiento de las placas en las que está cuarteada la corteza terrestre

La mayor parte de México está sobre el extremo suroeste de la placa norteamericana. Aquí, se encuentra con la placa de Cocos, sobre la que descansa el océano Pacífico que baña las costas occidentales de América Central. Esta placa se está metiendo debajo de la norteamericana y es esta subducción la que genera la tensión que, cada cierto tiempo, se libera en forma de terremotos. Este encontronazo entre placas es también la causa de la gran concentración de volcanes en la región conocida como el Arco Volcánico Centroamericano.
"La placa de subducción, al meterse debajo, se atasca acumulando tensión", explica el profesor José J. Martínez Díaz, experto en geodinámica planetaria de la Facultad de Ciencias Geológicas de la Universidad Complutense de Madrid. "Al desatascarse, se produce el terremoto", añade.

¿Ha sido el sismo más intenso de México?

"El terremoto de ayer ha sido el más intenso jamás registrado en Ciudad de México", explica Víctor Manuel Cruz, investigador del Departamento de Sismología de la Universidad Autónoma de México. La magnitud de los sismos indican cuán grande es la ruptura en la falla que origina el terremoto. El sismo de ayer tuvo una magnitud de 7,1 mientras que el del 7 de septiembre alcanzó los 8,2. La intensidad indica la velocidad del movimiento del suelo en diferentes puntos a consecuencia del terremoto.

En este sentido, Cruz señala que "seguro estamos ante el más intenso registrado. El terremoto de 1985 tuvo una intensidad máxima de 35 gales [la unidad de aceleración en centímetros por segundo] mientras que el de ayer alcanzó los 58 gales en la estación de medición de Ciudad Universitaria". "Esta estación se asienta en zona de roca firme, no en el terreno de lago sobre el que se levantan algunas de las colonias de México más afectadas", explica el sismólogo, lo que puede explicar en parte por qué la destrucción del terremoto de ayer ha sido mayor. La principal razón de que el temblor haya causado una gran destrucción en la capital se debe a que el epicentro del sismo registrado ayer se estaba a apenas 120 kilómetros de la capital, mientras que el de Tehuantepec sucedió en el estado sureño de Chiapas, informa Nuño Domínguez desde Ciudad de México.

¿Es normal que se produzcan dos terremotos en apenas dos semanas casi en la misma zona y con una magnitud similar?

El 7 de septiembre pasado se producía en el sur de México, con los estados de Oaxaca y Chiapas como los más castigados, un terremoto de magnitud 8,2, aún superior al de este martes. Murieron unas 100 personas. La cercanía en el tiempo invita a pensar que están conectados. Pero su epicentro se encontró a más de 500 km del segundo sismo. "No hay una conexión directa entre los dos, aunque ambos son consecuencia de la convergencia del fondo del Pacífico (aquí sobre la placa de Cocos) y la placa norteamericana sobre la que se asienta México", asegura el profesor de geociencias de la Open University, David Rothery.

¿Existe el riesgo de fuertes réplicas?

El riesgo de réplicas peligrosas es menor, según explican en el Instituto Sísmico Nacional de México. El organismo ha registrado 31 réplicas hasta las 11 de la mañana de hoy, hora local, la mayor de ellas de magnitud 4. "En los últimos 100 años se han registrado siete terremotos muy parecidos al de ayer y todos ellos tuvieron comparativamente pocas réplicas, con lo que no esperamos muchas réplicas de intensidad considerable en esta ocasión", señala Allen Husker, sismólogo del Servicio Sismológico Nacional de México (SSN). En cambio el sismo del pasado 7 de septiembre lleva contabilizadas 3.400, la mayor de 6,1.

¿Por qué se han producido tantos derrumbes en la Ciudad de México?

La mayoría de las víctimas se han producido en Ciudad de México, a 100 kilómetros del epicentro del terremoto. También allí se han producido la mayoría de derrumbes de edificios. Además de que se trata de una de las zonas de mayor concentración de población del planeta, la Ciudad de México sí que parece estar levantada en mal sitio. Construida sobre la laguna que una vez rodeó Tenochtitlán, la gran ciudad azteca, la capital mexicana se asienta sobre terrenos muy porosos que amplifican el movimiento provocado por las ondas sísmicas.

Nieves Sánchez Guitián, del Colegio de Geólogos, sostiene que el terreno bajo la Ciudad de México "está formado por cenizas volcánicas poco consolidadas, con líquido intersticial que le da al terreno un comportamiento fluido, reduciendo su resistencia".

El temblor de 1985 causó miles de muertos y fue el fenómeno natural más mortífero en la historia de México. A pesar de causar una gran destrucción en la capital, así como en Morelos y Puebla, el temblor de ayer ha sido por ahora menos mortífero, con 225 muertos, aunque la cifra aumenta a medida que avanzan las operaciones de rescate. Husker, señala que están "analizando si los cambios en las edificaciones que comenzaron a hacerse después del sismo del 85 han hecho que la destrucción y las pérdidas humanas hayan sido menores", informa desde Ciudad de México Nuño Domínguez.

¿Un terremoto puede provocar la erupción de un volcán?

Poco después del sismo, el volcán Popocatépetl entró en erupción. El fenómeno, aunque no es habitual, ya se ha producido en otras zonas, como en Japón, Chile o Nicaragua. No se trata de que el terremoto despierte al volcán. De hecho, como explica el vulcanólogo del Instituto de Ciencias de la Tierra Jaume Almera/CSIC, Joan Martí, para que un volcán entre en fase eruptiva tras un terremoto, éste tiene que ser de gran magnitud pero, sobre todo,  "el volcán debe estar ya en fase de desequilibrio". Por eso, este terremoto no ha despertado otros volcanes de la región.

¿Se pueden predecir los terremotos?

Es en lo que anda la ciencia desde hace casi un siglo, pero no parece aún posible. Lo que si se está haciendo es anticipar sus peores efectos. México dispone de uno de los mejores sistemas de alerta temprana que, con un margen de unas decenas de segundos puede avisar a los ciudadanos para que se protejan. Una amplia red de sensores, la mayoría situados en las cercanías de la zona de subducción de la placa de Cocos, registra el más leve temblor y activa las alarmas. El problema esta vez es que el terremoto tuvo su epicentro demasiado cerca de una gran urbe como Ciudad de México y no dio tiempo a avisar con antelación a la población.

Fuente: ElPais.com
imagen placas tectónicas: desismos.blogspot.com

domingo, 10 de septiembre de 2017

Lo que está pasando en este momento en América con tres huracanes y un terremoto.

En pocos días, la región se ha visto afectada por devastadores fuerzas naturales. Hay motivos para el temor en el Caribe, México y Centroamérica.
El huracán Irma, visto desde el espacio


Mientras que Irma, una de las tormentas tropicales más potentes en los registros de observaciones en el Atlántico, azota con fuerza devastadora las islas del Caribe, otro fenómeno meteorológico similar sigue sus pasos, el huracán José. Al mismo tiempo, en el golfo de México gana fuerza Katia, que también alcanzó esa clasificación.

En un momento en que la región está siendo afectada por tres fuertes ciclones, la costa pacífica de México fue sacudida por un fortísimo terremoto. Se ha declarado una alerta de tsunami para México, Guatemala, El Salvador, Costa Rica, Nicaragua, Panamá, Honduras y Ecuador.



MINUTO A MINUTO: El 'potencialmente catastrófico' huracán Irma amenaza al Caribe y a EE.UU.

Puerto Rico y el Estado de Florida (EE.UU.) han declarado el estado de emergencia ante la eventual amenaza del huracán.

La tormenta Irma ha alcanzado la categoría 5 para huracanes, con vientos de hasta 280 kilómetros por hora, y amenaza con convertirse en la próxima amenaza climática para EE.UU., según el Centro Nacional de Huracanes (NHC) del país, informa ABC13.


El centro de la tormenta, que avanza en dirección oeste a 20 km/h, se encuentra localizado a 788 kilómetros al este de las Islas de Sotavento. Las autoridades de Puerto Rico han declarado el estado de emergencia en el país ante el avance de Irma.

Según el NHC, al término de esta semana la tormenta tropical podría alcanzar territorios de EE.UU., llegando incluso a Florida del Sur este domingo.

10 sep 2017

04:12 GMT
El ojo del huracán Irma se desplaza al oeste de Florida, donde ganará más fuerza, y apunta a San Petersburgo, no a Tampa, informa AP.
02:10 GMT
El Departamento de Estado de EE.UU. ha informado que 1.200 norteamericanos han sido evacuados de la isla caribeña de San Martín, donde la destrucción tras el paso del huracán Irma afecta al 70% de los hogares y edificios.

LATEST: 1,200 Americans have now been evacuated from St. Maarten after Hurricane #Irma, State Dept. says. https://t.co/Ot5AK8q5Rqpic.twitter.com/5ZEuuR77BR— ABC News (@ABC) 10 de septiembre de 2017
9 sep 2017

23:44 GMT
Un tornado afecta a la ciudad de Oakland Park, en el condado de Broward (Florida), informa el Servicio Meteorológico Nacional (NWS).

9/9: Tornado on the ground in Oakland Park #FLwx— NWS Miami (@NWSMiami) 9 de septiembre de 2017
23:05 GMT
Irma llega a Florida: Alerta inminente de tornados y de situación "potencialmente catastrófica"
El gobernador del Estado de Florida, Rick Scott, ha anunciado que el huracán Irma ya ha llegado al Estado y que para la noche del sábado al domingo se prevén tornados. Asimismo, ha definido la situación como "potencialmente catastrófica" y de amenaza para la vida de los residentes.
16:24 GMT
El gobernador de Florida, Rick Scott, ha declarado este sábado que las autoridades han emitido órdenes de evacuación tanto obligatoria como voluntaria para 6,3 millones de residentes, informa CBS News.
15:43 GMT
Irma se ha debilitado a categoría 3, con vientos máximos sostenidos de 205 kilómetros por hora. Sin embargo, los meteorólogos esperan que el fenómeno natural vuelva a recobrar su fuerza mientras se va de Cuba y rumbo al estado estadounidense de Florida.
10:50 GMT
El huracán Irma vuelve a debilitarse a categoría 4 y se dirige hacia el oeste creando "una situación muy peligrosa" para el sudoeste de Florida, informa ABC News.
04:01 GMT
Irma es el primer huracán de quinta categoría que toca tierra en Cuba desde 1924
Irma llega al archipiélago cubano de de Sabana-Camagüey.
03:51 GMT
Irma recupera la categoría 5 y llega a Cuba
Los vientos sostenidos del huracán alcanzaban los 260 kilómetros por hora a su paso por el archipiélago de Sabana-Camagüey. Mientras tanto, el Centro Nacional de Huracanes de EE.UU. ha ampliado las advertencias sobre el huracán y las marejadas ciclónicas en el territorio de Florida, a donde se espera que llegue Irma la madrugada del domingo.
03:45 GMT
El huracán José se torna más y más potente y puede llegar en poco al nivel 5, máximo de peligrosidad, según el Centro Nacional de Huracanes de EE.UU. (NHS, por sus siglas en inglés).

El huracán José alcanza la categoría 3 en el Atlántico

El tercer huracán fuerte de la temporada, que sigue la misma trayectoria de Irma, "seguirá fortaleciéndose durante las próximas 24 ó 36 horas".

El huracán José, que se desplaza por el Atlántico siguiendo el mismo rumbo que Irma, ha alcanzado la categoría 3, lo que lo convierte en el tercer mayor huracán de la temporada de tormentas del Atlántico de este año, informa el Centro Nacional de Huracanes de EE.UU. (NHC, por sus siglas en inglés).

La velocidad máxima de los vientos sostenibles del huracán, que avanza hacia el noreste del Caribe, alcanzan ya los 195 kilómetros por hora, con ráfagas incluiso de mayor intensidad.

Se prevé que José se fortalezca aún más en los próximos 24 ó 36 horas, estima el centro.

El huracán alcanzó este jueves la categoría 2 según la escala de  Saffir-Simpson y, como sigue los pasos de Irma, podría sacudir de nuevo a algunas las islas caribeñas que ya han sufrido daños por el huracán Irma. De momento, no está claro si José tocará tierra en Estados Unidos.


Asimismo, el NHC estima que las precipitaciones que traerá consigo José podrían alcanzarán hasta los 15 centímetros en las islas de Sotavento, desde Dominica hasta Anguilla.

Barbuda, que ya sufrió daños de hasta 90% debido al huracán Irma también será afectada por fuertes lluvias de hasta 25 centímetros. Se estima que las fuertes lluvias podrían causar inundaciones adicionales que supongan una amenaza para la vida.


La tormenta Katia también alcanza nivel de huracán frente a la costa de México

Junto a tormenta tropical José, el ciclón ha alcanzado este miércoles la categoría de huracán, con los vientos sostenibles de 120 kilómetros por hora.


La tormenta tropical Katia, formada en el golfo de México, ha alcanzado este miércoles una intensidad de vientos sostenibles de 120 kilómetros por hora, alcanzando de esa forma el nivel de huracán, informa ABC.

El Gobierno de México ha activado la vigilancia de huracán a lo largo de la costa del Estado de Veracruz, desde Tuxpan hasta Laguna Verde. Se prevé que la tormenta se desplace este jueves por la costa.

Minutos antes el Centro Nacional de Huracanes de EE.UU. (NHC, por sus siglas en inglés) anunció que la tormenta tropical José ha alcanzado fuerza de huracán y se está "fortaleciendo rápidamente".


Katia se formó la madrugada de este miércoles frente a la costa de México con vientos iniciales de unos 65 kilómetros por hora, según el NHC, si bien el centro advirtió en aquel momento que la tormenta se fortalecería en los próximos dos días. Ahora la intensidad de los vientos máximos de Katia se ha duplicado.


MINUTO A MINUTO: Qué pasa en América Latina tras el fortísimo terremoto de magnitud 8,2 en México

Las últimas noticias sobre las consecuencias del fuerte sismo que ha sacudido este jueves la costa sur de México y que ha afectado a otros siete países: Guatemala, El Salvador, Costa Rica, Nicaragua, Panamá, Honduras y Ecuador.

Este jueves un terremoto de magnitud 8,2 se ha registrado en la costa sur de México, declarándose a continuación una alerta de tsunami para México, Guatemala, El Salvador, Costa Rica, Nicaragua, Panamá, Honduras y Ecuador, informa el Centro de Alerta de Tsunamis del Pacífico (PTWC, por sus siglas en inglés).

El epicentro del sismo se ha localizado a una profundidad de 33 kilómetros y a 119 kilómetros de Tres Picos.

10 sep 2017

03:30 GMT
México: Ascienden a 92 los muertos por el terremoto
El gobernador del Estado de Oaxaca ha informado que 71 personas han perdido la vida en el terremoto de magnitud 8,2 que se registró este jueves, elevando a 92 el número de muertos por el sismo en todo el territorio mexicano, recogen medios locales.
02:08 GMT
El Banco de Desarrollo de América Latina ha aprobado una donación de 200.000 dólares para ayudar a las víctimas del terremoto en México, informa 'El País'.
9 sep 2017

00:23 GMT
Ascienden a 61 los muertos por el terremeto en México
El mandatario mexicano, Enrique Peña Nieto, ha confirmado que la cifra de los muertos en el sismo ya es de 61 personas.
8 sep 2017

22:52 GMT
El presidente de México, Enrique Peña Nieto, ha decretado luto nacional por los fallecidos en el terremoto.

Alerta de tsunami en ocho países de América Latina tras sufrir México un fuerte sismo


Un gran sismo de magnitud 8,2 se ha registrado este jueves en México.


Un terremoto de magnitud 8,2 se ha registrado este jueves en la costa sur de México, informa el Servicio Sismológico Nacional mexicano. El epicentro del terremoto se registró en Tonalá, Estado de Chiapas, a las 23:49, hora local. Se trata del terremoto más fuerte registrado en México desde 1985, según estimaciones de la agencia Reuters.

El epicentro del sismo se localizó a una profundidad de 33 kilómetros y a 119 kilómetros de Tres Picos. Hasta el momento se han registrado tres réplicas de magnitud 6,1, 5,8 y 5,7 al sureste de la ciudad de Salina Cruz, en Oaxaca. El Servicio Geológico de EE.UU. (USGS) ha registrado cuatro réplicas de magnitud 5,2, 5,2, 5,4 y 5,7. 

Al menos 15 personas -2 en Tabasco, 3 en Chiapas, y 10 en Oaxaca- han perdido la vida tras el movimiento telúrico.

Asimismo, se ha declarado alerta de tsunami para México, Guatemala, El Salvador, Costa Rica, Nicaragua, Panamá, Honduras y Ecuador, informa el Centro de Alerta de Tsunamis del Pacífico (PTWC, por sus siglas en inglés). Este mismo centro pronostica "posibles olas extensas y peligrosas de tsunami", informa Sky News.

El sismo se ha sentido en la capital mexicana, donde se produjeron cortes de electricidad en algunos barrios. La gente salió corriendo a las calles cuando empezó el temblor, según una fuente de la agencia Reuters citada por SBS.

En las redes sociales circulan videos en los que se aprecia cómo se tambalea el Ángel de la Independencia, una de los principales atracciones turísticas de la Ciudad de México, durante el sismo.

"La gente salió corriendo de sus hogares", "no hay electricidad" o "fortísimo", fueron algunos de los primeros comentarios que compartieron los testigos del sismo, que se prolongó durante aproximadamente un minuto.

Asimismo, en la capital mexicana se ha registrado un fenómeno aéreo inusual denominado luces de terremoto. Esta luminosidad, que se asemeja a la aurora boreal, aparece en las inmediataciones del lugar donde se registra la actividad tectónica.

Se informa que varias personas se encuentran atrapadas entre los escombros de un hotel parcialmente derrumbado en Matías Romero, Oaxaca. 

"Me dirijo al Centro Nacional de Prevención de Desastres para una evaluación general de los efectos del sismo en el territorio nacional", ha tuiteado el presidente mexicano, Enrique Peña Nieto. 


El insólito fenómeno aéreo registrado en México durante el fortísimo sismo de 8,2


El fenómeno denominado luces de terremoto se ha manifestado este jueves en la Ciudad de México.





Durante el sismo de magnitud 8,2 registrado a última hora de este jueves en la capital mexicana, se ha registrado un fenómeno aéreo denominado luces de terremoto, que fue observado frente a la costa chiapaneca.

Esta luminosidad, que se asemeja a la aurora boreal, aparece en las inmediaciones del lugar donde se registra la actividad tectónica y es un inusual fenómeno meteorológico que no está totalmente explicado.


Un grupo de científicos estadounidenses y canadienses, que estudiaron el insólito fenómeno natural, vincularon la aparición de las extrañas luces con la presencia en la zona de rifts, fosas tectónicas donde dos partes de la corteza terrestre se estiran en direcciones contrarias.

FUENTE: Actualidad.RT.com

viernes, 6 de mayo de 2016

Los terremotos destructivos y las grandes fallas de la corteza terrestre.

El terremoto destructivo que afectó el pasado día 16 de abril a Ecuador ha conmovido a la opinión pública, como ocurre cada vez que se produce uno de estos eventos, y ha puesto en evidencia la necesidad de prevenir este tipo de catástrofe natural y de estar preparados para paliar los daños y proteger a la población. Actualmente no es posible predecir, con suficiente grado de certeza cuándo se va a producir un terremoto. Por ello, para controlar el riesgo sísmico se trabaja en abordar la prevención, caracterizando los terremotos esperables en una zona en términos de localización, máximas magnitudes y periodos de recurrencia. Para lograr esos datos es necesario no sólo disponer de los registros instrumentales de los terremotos sino también el conocimiento científico de los factores geológicos de las fuentes de los terremotos.Ecuador es un país sometido a una alta sismicidad porque se encuentra localizado al lado de la zona de contacto entre dos placas de la litosfera, la placa de Sudamérica y una de las placas del Pacífico, la Placa de Nazca. Ambas convergen en esta zona a una tasa de unos 61 milímetros al año, de forma que la segunda se introduce hacia el interior por debajo de la placa de Sudamérica en un fenómeno denominado subducción. El foco de este terremoto se ha situado a 19,2 kilómetros de profundidad, en la superficie de contacto entre ambas placas, que es un plano inclinado unos 16 grados hacia al Este. Se trata por lo tanto de un terremoto interplaca de subducción en el que ha roto un área que alcanza unos 160 kilómetros de longitud.Las zonas de subducción similares a la de Ecuador han producido muchos de los mayores terremotos registrados, como el de Valdivia (Chile), de 1960 y magnitud 9.5; el de Tohoku (Japón), de 2011 y magnitud 9.0, y el de Sumatra, de 2004 y magnitud 9.1. La magnitud del terremoto de Tohoku, que provocó la crisis de la central nuclear de Fukushima, fue mucho mayor que la de terremoto de Ecuador, porque rompió un área de 400 x 200 kilómetros.Pero gran parte de los terremotos superficiales, con el foco a menos de 60 kilómetros de profundidad, se generan por deslizamientos bruscos a lo largo de fallas que rompen la relativamente fría corteza terrestre. El modelo de movimiento en fallas y la generación de terremotos fue desarrollado para explicar el terremoto de San Francisco de 1906. Aquel terremoto, de magnitud 7.9, se produjo al romper a lo largo de más de 432 kilómetros la falla activa de San Andrés, que separa las placas Pacífica y de Norteamérica. La rotura en grandes fallas activas ha producido en las últimas décadas importantes terremotos destructivos: el de Izmit (Turquía), de 1999 y de magnitud 7.4, se produjo por un deslizamiento en la falla de Anatolia; el de Katmandú (Nepal), en 2015, fue debido a una falla situada en la base del Himalaya. Más próximo a nosotros el terremoto de Lorca de 2011, de magnitud 5.1, se produjo en la falla de Alhama de Murcia, causando sorprendentemente importantes daños.Una serie de nuevas especialidades de la geología, como la tectónica activa y la paleosismología, están cambiando nuestra percepción de las relaciones entre fallas y terremotos. Las fallas activas se investigan mediante la excavación de zanjas en las que se observa cómo estas estructuras rompen suelos y sedimentos, se detectan sismos prehistóricos y se calcula su cinemática, los periodos de recurrencia de paleosismos y su magnitud. Nuevas metodologías, como la interferometría de radar, las medidas de las deformaciones del suelo mediante observaciones con GPS, la geomorfología tectónica y la arqueosismología, dan datos muy precisos y valiosos.En nuestro país hay registro de grandes terremotos históricos destructivos y la inmensa mayoría son debidos a fallas activas, salvo alguno de foco profundo. Dada la importancia del cálculo de la peligrosidad sísmica de las fallas activas en la Península Ibérica, han progresado en los últimos quince años los estudios de tectónica activa y de paleosismología, y en varias universidades e instituciones existen grupos de investigación especializados que han aportado, en varios congresos con el título Iberfault, sus conclusiones sobre la paleosismicidad y las fallas activas de la península. Un resultado de estos trabajos ha sido la creación y gestión de una base pública de datos de las fallas ya estudiadas, denominada Base de datos de fallas activas cuaternarias de Iberia (QAFI), que ha sido promovida y que gestiona el Instituto Geológico y Minero de España. Todos estos nuevos conocimientos científicos se están aplicando ya en los estudios de riesgo sísmico en varias comunidades autónomas y en el nuevo Mapa de peligrosidad sísmica realizado en 2012 por el Instituto Geográfico Nacional.

Fuente: Ramón Capote (Catedrático Universidad Complutense de Madrid) - ElMundo.es

domingo, 13 de diciembre de 2015

La deriva continental cumple 100 años.

Pese a precedentes más antiguos, la hipótesis que Alfred Wegener publicó en 1915 es el origen de la moderna tectónica de placas.

La moderna tectónica de placas supuso un salto conceptual en la geología comparable al átomo de Bohr en la física, o al código genético en la biología.
Wegener demostró que no solo la forma de las líneas de costa a los dos lados del Atlántico, sino también las estructuras geológicas del oriente americano y el occidente africano, sus tipos de fósiles y las secuencias de sus estratos, presentaban unas similitudes asombrosas.
Nuevos datos sobre paleomagnetismo y sedimentos marinos, junto a la observación de las cordilleras suboceánicas –por donde emerge de las entrañas de la Tierra el nuevo suelo que va desplazando los continentes actuales—, reivindicaron la hipótesis de la deriva continental.


Cuando Alfred Wegener murió –en 1930, durante la última de sus expediciones a Groenlandia—, la gran idea de su vida había sido descartada, olvidada y vilipendiada. La idea era la deriva continental, y habrían de pasar aún 30 años para que se sacara del cajón, se demostrara correcta y se convirtiera en el fundamento de la gran revolución de la geología, la moderna tectónica de placas, un salto conceptual comparable al átomo de Bohr en la física, o al código genético en la biología. Así son las revoluciones de la ciencia, que no solo devoran a sus hijos, sino también a sus padres.
La chispa que encendió la hipótesis de la deriva continental es la misma que habrán observado miles de niños al echar un vistazo al mapamundi colgado de la pared del aula: el desconcertante parecido entre las líneas de costa de Sudamérica y África, a los dos lados del Atlántico. Y no fue Wegener el primero en reparar en ello. El filósofo británico Francis Bacon ya mencionó el parecido de las líneas de costa en su Novum Organum de 1620, y también lo hizo el conde de Buffon, un naturalista francés del siglo XVIII, y el alemán Alexander von Humboldt hacia el final de esa misma centuria. Von Humboldt llegó a sugerir que aquellas dos costas habían estado juntas en el pasado.
Pero Wegener fue mucho más allá de esas meras impresiones visuales. No solo era explorador, sino también meteorólogo y geofísico, y ello le permitió reunir un cuerpo de evidencia multidisciplinario y que, en retrospectiva, se puede considerar más bien aplastante. Wegener demostró que no solo la forma de las líneas de costa a los dos lados del Atlántico, sino también las estructuras geológicas del oriente americano y el occidente africano, sus tipos de fósiles y las secuencias de sus estratos, presentaban unas similitudes asombrosas.

Como él mismo señaló en su publicación de 1915 –de la que celebramos el centenario—, si reuniéramos esos dos continentes, todas las estructuras “casarían como las líneas de texto en un periódico roto”, en la eficaz metáfora citada en Science por los geólogos Marco Romano, de la Universidad de Roma, y Richard Cifelli, del Museo Sam Noble de Norman, en Oklahoma. Wegener también conjeturó que los continentes representaban placas enormes de una roca más ligera que flotaban sobre rocas oceánicas más densas, una idea que, aunque no del todo correcta, prefigura la tectónica de placas moderna.
Pero, como tal vez habría cabido esperar, una hipótesis tan rompedora con la geología de comienzos del siglo XX, y por muy bien que estuviera fundamentada, solo podía desatar tormentas con gran aparato eléctrico en los estamentos académicos de la época. Aunque la deriva continental suscitó en 1915 algunos apoyos, como el de los geólogos Émile Argand y Alexander du Toit, fueron muchos más los científicos que optaron por quemar al hereje. “La hipótesis de la deriva”, escriben Romano y Cifelli, “era tan iconoclasta que se ganó el vitriolo, el ridículo y el desprecio de los especialistas, cuyos propios trabajos publicados partían de la premisa de una corteza terrestre horizontalmente inmóvil”.

El punto débil de la hipótesis era que Wegener no pudo encontrar un mecanismo convincente para alimentar todos esos movimientos de continentes. Avanzó tímidamente un par de ideas basadas en la rotación de la Tierra y algún otro fenómeno, pero eran tan obviamente incorrectas o insuficientes que solo sirvieron para ponérselo más fácil a sus atacantes del ramo de la geofísica. Pasado el revuelo inicial, la gran idea de Wegener fue olvidada en un cajón humillante de la historia.
Y allí se quedó hasta tres décadas después de morir Wegener, cuando nuevos datos sobre paleomagnetismo y sedimentos marinos, junto a la observación de las cordilleras suboceánicas –por donde emerge de las entrañas de la Tierra el nuevo suelo que va desplazando los continentes actuales—, reivindicaron la hipótesis de la deriva continental y desarrollaron alrededor de ella una nueva síntesis de la geología, la tectónica de placas que fundamenta esa ciencia en la actualidad.

Wegener no pudo saberlo, pero la Tierra le dio la razón.


Fuente: ElPais.com


sábado, 13 de junio de 2015

En busca de predecir los terremotos.

La Tierra se retuerce a 15 kilómetros bajo la superficie de Nepal. Un cabalgamiento de placas geológicas -la piel de roca de nuestro planeta, para entendernos- donde una se desliza bajo la otra tras el choque de continentes que formó hace 55 millones de años la cordillera del Himalaya continúa sacudiendo la zona de cuando en cuando. Y normalmente los temblores no vienen solos, sino seguidos de un buen número de réplicas que en ocasiones empeoran las consecuencias de la catástrofe humana.
Los geólogos llevan siglos estudiando los mecanismos que causan los terremotos. El problema para los expertos ha sido siempre poder llegar a predecir con suficiente antelación cuándo se va a producir un gran temblor como los últimos que han azotado Nepal causando más de 8.000 muertes. Desde hace años, diversos proyectos internacionales investigan con diferentes metodologías cómo lograrlo.

Quizá el modo más prometedor es mediante la perforación del subsuelo en zonas sísmicas. El objetivo es alcanzar la falla que provoca los temblores en cada lugar para instalar sensores que puedan medir la deformación de la roca, los fluidos, la temperatura... Y poder así llegar a hacer previsiones del riesgo sísmico.

"Estamos aún lejos de llegar a predecir un terremoto en la escala temporal humana, pero en tiempos geológicos sí sabemos dónde y cuándo se van a producir grandes terremotos", asegura María José Jurado, experta en terremotos del Instituto de Ciencias de la Tierra Jaume Almera (CSIC). "Pero se podría hacer una analogía con la Meteorología, donde es muy sencillo hacer previsiones porque tenemos muchísimos observatorios vía satélite y de muchos otros tipos para saber qué tiempo hará dentro de unos días. Si nosotros tuviéramos una red de observatorios de terremotos en el subsuelo nos permitiría saber dónde y cuándo se puede producir un terremoto", dice Jurado.

Esta investigadora española ha sido líder de algunos proyectos internacionales destinados precisamente a perforar el subsuelo oceánico en la falla que produjo el terremoto de Japón del año 2011 para instalar sensores que ayuden en la predicción de seísmos en el futuro. «El objetivo del proyecto es penetrar los fondos oceánicos de las zonas en las que se producen los epicentros de los terremotos para monitorizarlos y poder estudiar su origen», asegura Jurado. «Estas investigaciones nos servirán para desarrollar un sistema de predicción de terremotos con un plazo suficiente como para poder actuar y evitar grandes daños», explica. A escala global, podríamos imaginarla como una gran Red de Observatorios de los fenómenos sísmicos. Por desgracia, en Japón aún no se han podido alcanzar los 5.000 metros de profundidad del hipocentro de aquel devastador seísmo. En la actualidad, el Chikyu, el buque de perforación científica japonés, está entre los 2.000 y los 3.000 metros.

Desgraciadamente, España se ha quedado fuera de los dos grandes consorcios internacionales, el Programa Internacional para el Descubrimiento del Océano (IODP, por sus siglas en inglés) y el Programa Internacional de Perforación Científica Continental (ICDP, en inglés), por no pagar desde 2011 las cuotas a las que se comprometió como país.

Precisamente, estos programas en los que España ya no participará ya han avanzado en este tipo de técnicas de perforación para predecir seísmos en lugares señalados como la falla de San Andrés (California), la de Nankai (Japón), entre otros. De hecho, uno de los proyectos que se están evaluando en el organismo internacional es para perforar en el Tibet, lo que podría haber ayudado ante una catástrofe natural como la que está asolando Nepal.

Fuente: ElMundo.es

viernes, 24 de abril de 2015

Las dos Américas se unieron millones de años antes de lo que se creía.

Sedimentos hallados en los Andes llegaron de Panamá arrastrados por antiguos ríos hace unos 13 millones de años, según un estudio en 'Science'
La nueva datación podría afectar a mucho de lo que se sabe de la historia del planeta
2.000 años de historia de Sudamérica escritos en el hielo.

Las dos Américas se convirtieron en una mucho antes de lo que se creía. La unión por lo que hoy es Panamá se produjo hace unos 13 millones de años y no 3,5 millones como daba por hecho la comunidad científica. Una investigación de geólogos colombianos ha datado rocas encontradas en los Andes en esa fecha que, aseguran, solo pueden proceder del istmo ya emergido. De confirmarse este retraso, los libros de ciencia tendrán que reescribir lo que se sabe sobre la primera glaciación de la era actual o la gran emigración de especies que se produjo entre ambas Américas.

La teoría más aceptada sobre la fecha en que los dos continentes americanos se unieron sostiene que un proceso iniciado unos 20 millones de años atrás se completó hace unos 3,5 millones. El juego de tronos entre la placa del Caribe, la Sudamericana y la Norteamericana fue salpicando el mar que separaba ambas Américas de un mosaico de islas. La partida culminó con la emergencia de una lengua de tierra que separó para siempre las aguas del Pacífico y el Atlántico.

La unión americana explica muchas cosas que pasaron desde entonces. Como atestigua el registro fósil, es desde esa fecha cuando se produce lo que llaman el Gran Intercambio Americano: muchas especies de vertebrados migraron de un continente a otro. Varias investigaciones muestran, además, que a partir de entonces, las especies y sedimentos marinos de los actuales Pacífico y Caribe empiezan a diferenciarse. Hay quienes, incluso, señalan que la actual era de glaciaciones se inicia al separar los mares. La emergencia del istmo habría intensificado la circulación oceánica en el Atlántico y el Pacífico que, en un complejo proceso, hace que los hielos se expandan o retiren del hemisferio norte de forma periódica. La última de esas retiradas permitió la expansión del hombre moderno.
"Es una hipótesis muy elegante pero si el cierre se produjo mucho antes, debería ser revisada", dice el profesor de la Universidad de los Andes (Colombia), Camilo Montes. Este paleogeógrafo, junto a investigadores de otras universidades colombianas, ha encontrado pruebas que les permiten retrasar el cierre unos 10 millones de años más atrás, a la época geológica conocida como Mioceno Medio. "Sabemos que va a haber mucho debate y que nos van a dar palos por muchos lados", reconoce un Montes que, sin embargo, cree en la fortaleza de su hallazgo.

Estos geólogos colombianos aprovecharon las obras de ampliación del Canal de Panamá para buscar en los estratos más antiguos una piedra, el circón. Este mineral metálico tiene dos particularidades. Por un lado, es muy resistente a la meteorización, así que su erosión es muy lenta. Además, se presenta con pequeñas cantidades de uranio. El proceso por el que uranio decae (de un isótopo radiactivo a otro) hasta convertirse en uno estable de plomo es conocido y es una de las bases de la geocronología.
Tal y como muestran en la revista Science, desde el canal fueron yendo cada vez más al sur, realizando perforaciones y catas hasta llegar al flanco occidental de la Cordillera Central colombiana, donde acaban los Andes. Encontraron muestras de circón que no podían ser originarias de esa zona y "en capas de hace unos 15 millones de años y no en las de 3,5 millones de años", comenta Montes. "Lo más probable, casi seguro, es que procedan de Panamá", añade.

De hecho, tras someter las distintas muestras a su desintegración por láser y su análisis por un espectrómetro de masas, la relación de isótopos de uranio y plomo entre las obtenidas en Panamá y las colombianas concluye que el circón de ambas tiene el mismo origen. Para los investigadores, este mineral llegó hasta Colombia arrastrado por antiguos ríos en un largo proceso de erosión. Y claro, para que haya un río antes debe de haber una tierra por el que discurra y esa tierra no puede ser otra que el istmo de Panamá.

La gran migración animal
De confirmarse este retraso de al menos 10 millones de años en la unión de las dos Américas, la nueva fecha cuestiona mucho de lo que la ciencia daba por cierto hasta ahora. La hipótesis elegante de los 3,5 millones de años y su conexión con la gran migración de especies entre ambos continentes se debilita. También lo hace su relación con el cambio climático que trajo las glaciaciones por el cierre del istmo. Si se produjo mucho antes, ¿porqué los animales esperaron millones de años a atravesar Panamá?

"La respuesta es muy sencilla, el cierre del canal marítimo no jugó ningún papel en el cambio climático", asegura el profesor de geología de la Universidad de Colorado en Boulder (EE UU), Peter Molnar. Aunque hubo especies de vertebrados como camélidos, parientes de los pecaríes o grandes felinos que fueron del norte al sur y antecesores del perezoso e incluso plantas que emigraron al norte antes de los 3,5 millones de años, la gran migración se produjo después de esa fecha.
Para Molnar, la unión de las dos Américas fue un requisito necesario pero no suficiente. En realidad, pudo ser el frío de la glaciación que se inició en aquel tiempo lo que produjo la estampida. "El Gran Intercambio Americano es enteramente consecuencia del cambio climático. Durante las edades de hielo, los trópicos se enfrían y secan. Los animales que cruzaron vivían en sabanas. Ellos debían cruzar lo que hoy es Panamá. Cruzaron porque el clima había cambiado la vegetación y la barrera climática cambió por completo", explica. Y el ciclo de glaciaciones del Cuaternario (periodo actual) coincide con la explosión de registros fósiles, no con el cierre del canal marítimo.

De una tacada, Montes y sus colegas desmontan tres de las bases de la historia geológica. Sin embargo, los defensores de la teoría original se muestran muy escépticos con sus conclusiones. Uno de guardianes de la fecha de los 3,5 millones de años es el estadounidense Anthony Coates, investigador del Instituto Smithsonian de Investigación Tropical. Coates ha dedicado buena parte de su vida a investigar la unión entre los continentes americanos y no le convencen los argumentos de Montes.

"Incluso aunque el circón se transfiriera como ellos dicen, y hay serias dudas sobre la historia de que proceda de un protopanamá, se trata de una región relativamente pequeña de Colombia y esto no descarta que el resto de cientos de kilómetros del istmo tuviera vías marinas como sucede en el arco indonesio actual, que nosotros creemos que es una buena comparación con la América Central de hace 10 o 15 millones de años", dice Coates en un correo. Es decir, sin negar que pudiera haber ya entonces alguna conexión, sería más en forma de archipiélago que de una gran lengua de tierra.

Montes replica que las muestras del occidente colombiano que han analizado proceden de varias zonas del arco panameño: "la única forma de explicar esto es tener un rio troncal que conectara una buena parte del istmo".

Fuente: ElPais.com

jueves, 23 de abril de 2015

Un estudio vincula el 'fracking' a 30 terremotos en Texas en 2014.

A finales del año 2013 y principios de 2014, cerca de 30 terremotos sacudieron las inmediaciones de la ciudad de Azle, en Texas (EEUU), donde nunca habían tenido relación alguna con los temblores de tierra. Los vecinos y algunos expertos se apresuraron a vincular aquellos movimientos con una técnica de inyección en el subsuelo del agua de desecho que genera la extracción de gas mediante el llamado 'fracking'. En aquel momento, la indignación ciudadana se manifestó durante días reclamando a la administración y a los reguladores que frenase las actividades industriales hasta que la ciencia se pronunciase al respecto. Y ahora lo ha hecho en una investigación recién publicada en la revista 'Nature Communications'.

Un equipo de geólogos y sismólogos de la Universidad Southern Methodist de Dallas (Texas, EEUU) y del Servicio Geológico de EEUU (USGS, por sus siglas en inglés) demuestra en el trabajo que la inyección de grandes volúmenes de estas aguas residuales combinada con la extracción de salmuera del subsuelo en los pozos de gas agotados son la causa más probable de los 27 terremotos que sintió la población de Azle entre diciembre de 2013 y la primavera de 2014. Los temblores no superaron los 3,7 de magnitud máxima, la misma que tuvo el reciente movimiento de Urda en Toledo y que no causó daños.

En la zona afectada hay identificadas dos fallas geológicas que podrían ser responsables de los temblores. Los científicos desarrollaron un complejo modelo en 3D para saber si el cambio de presiones producido por la inyección de fluidos podría ser la causa de los terremotos en una zona donde había dos pozos de inyección de aguas de desecho y más de 70 de 'fracking', una forma de extraer gas natural para la que hay que perforar y romper estratos rocosos de pizarra a gran profundidad en el subsuelo inyectando agua a presión mezclada con arena y sustancias químicas.

"El modelo indica que en una de las fallas se genera una diferencia de presiones", explica Matthew Hornbach, autor principal del estudio. "Cuando simulamos el funcionamiento del pozo durante 10 años con un amplio rango de parámetros, el modelo predice cambios suficientemente grandes como para desencadenar terremotos en fallas que ya tenían presiones", asegura.

En Estados Unidos, las aguas contaminadas que se generan durante el proceso de extracción de petróleo y gas se suelen inyectar en el espacio subterráneo dejado por los hidrocarburos. Los científicos demostraron ya en 2013 que esta técnica puede afectar a las tensiones geológicas de zonas en las que hay presencia de fallas. Por ejemplo, un estudio publicado en 2014 en 'Science', revelaba que cuatro pozos de inyección situados en Jones, Oklahoma (EEUU) afectaron hasta a 35 kilómetros y fueron capaces de provocar hasta el 20% de los terremotos de todo el centro de EEUU. De hecho, Oklahoma llegó a superar a California -el estado que suele ostentar el récord- en número de terremotos al año, no en intensidad. Y lo mismo sucedió con la cadena de terremotos que se produjeron en marzo de 2014 en Poland Township, Ohio (EEUU), que fueron provocados por las actividades de fracking (o extracción de hidrocarburos mediante fracturación hidráulica) en la zona, según una investigación.

En cualquier caso, la reinyección no se va a utilizar ni ahora ni en el futuro en los proyectos de exploración de gas no convencional en España, según un portavoz de Shale Gas España, la patronal de las empresas de explotación gasista mediante esta técnica. «En España, el agua de retorno que se recupere tras el proceso de estimulación hidráulica se almacenará en tanques certificados y sellados para su tratamiento o reciclaje», explica.

Fuente: ElMundo.es